
A Formal Method for Developing
Provably Correct Fault-Tolerant Systems

Using Partial Refinement and Composition
Ralph Jeffords, Constance Heitmeyer, Myla Archer, and Elizabeth Leonard

Naval Research Laboratory
Washington, DC 20375

{jeffords,heitmeyer,archer,leonard }@itd.nrl.navy.mil

Abstract. It is widely agreed that building correct fault-tolerant systems is very
difficult. To address this problem, this paper introduces a new model-based ap-
proach for developingmasking fault-tolerant systems. As in component-based
software development, two (or more) component specifications are developed,
one implementing the required normal behavior and the other(s) the required
fault-handling behavior. The specification of the required normal behavior is ver-
ified to satisfy system properties, whereas each specification of the required fault-
handling behavior is shown to satisfy both system properties, typically weakened,
and fault-tolerance properties, both of which can then be inferred of the composed
fault-tolerant system. The paper presents the formal foundations of our approach,
including a new notion ofpartial refinementand two compositional proof rules.
To demonstrate and validate the approach, the paper applies it to a real-world
avionics example.

1 Introduction

It is widely agreed that building a correct fault-tolerant system is very difficult. One
promising approach, proposed by us and others, for obtaining a high-assurance fault-
tolerant system is to specify the system requirements in two phases [4, 18, 7, 19]. In the
first phase, thenormal (also calledideal) system behavior, the system behavior when
no faults can occur, is specified. In the second phase, the no-faults assumption is re-
moved, and the system’s required fault-tolerant behavior is specified. Such an approach
has many advantages. First, a specification of the normal behavior known to be correct
can be reused if the design of fault-tolerance changes. Second, if the fault-tolerant sys-
tem can be expressed as an extension of a system with normal behavior by adding a
set of fault-handling components, the specification is easier to understand and easier to
construct than a fault-tolerant system specified as a single component. Third, by apply-
ing formal specification during two separate phases, errors may be uncovered—e.g., by
applying formal verification—that might otherwise be overlooked. For example, our ap-
plication of two-phase specification and verification to a real-world avionics device [7]
uncovered modeling errors previously unnoticed (see Section 5). Finally, specifications
of the fault-handling components may be reused in other systems.

The model-based approach proposed in this paper has attributes of two other popular
approaches for developing software systems. As in aspect-oriented programming [17,
16], the approach weaves certain aspects, specifically, the “fault-tolerant” aspects, into
the original program. Moreover, as in component-based software development, two (or
more) components are developed separately, and later composed to produce the final



implementation. This paper makes three contributions; it presents: 1) a component-
based approach for developing a special class of fault-tolerant systems, called “mask-
ing” fault-tolerant systems, which uses formal specification and formal verification to
obtain high confidence of system correctness; 2) a formal foundation, including a set
of sound compositional proof rules, a formal notion offault-tolerant extension, and a
formal notion ofpartial refinementwith an associated notion ofpartial property inher-
itance; and 3) a complete example of applying the approach to a real-world system.

The paper’s organization is as follows. After definingmaskingfault-tolerance, Sec-
tion 2 briefly reviews the SCR (Software Cost Reduction) method used in our example.
Section 3 introduces our formal method for developing fault-tolerant systems, an ex-
tension of the approach to software development presented in [7]. To establish a formal
foundation for the method, Section 4, inspired by the theory of fault tolerance in [18]
and the theory of retrenchment applied to fault-tolerant systems in [5], presents our new
notions of partial refinement and fault-tolerant extension, and two compositional proof
rules. To demonstrate and validate our approach and to show how formal methods can
be used to support the approach, Section 5 applies the method to a device controller
in an avionics system [20]. Finally, Sections 6 and 7 discuss related work and present
some conclusions. Although SCR is used in Section 5 to demonstrate our approach,
the method and theory presented in this paper are basically applicable in any software
development which specifies components as state machine models.

2 Background
2.1 Masking Fault-Tolerance

This paper focuses onmasking fault-tolerance, a form of fault-tolerance in which the
system always recovers to normal behavior after a fault occurs, so that the occurrence of
faults is rendered mostly invisible, i.e., “masked.” We consider two variants of masking
fault tolerance. In the first variant,transparentmasking, all safety properties [2] of the
system are preserved even in the presence of faults, and the effect of faults on the system
behavior is completely invisible. In the second variant,eventualmasking, some critical
subset of the set of safety properties is preserved during fault handling, though other
safety properties guaranteed during normal behavior may be violated. When masking is
transparent, the system’s fault-tolerant behavior is a refinement of its normal behavior.
For eventual masking, system behavior during fault-handling is adegradedversion of
normal behavior, and the relationship of the full fault-tolerant system behavior to nor-
mal system behavior is captured by the notions of fault-tolerant extension and partial
refinement presented in Section 4.1 The Altitude Switch (ASW) example in Section 5
illustrates both variants of masking fault-tolerance.

2.2 The SCR Requirements Method

The SCR (Software Cost Reduction) [13, 12] method uses a special tabular notation
and a set of tools for formally specifying, validating, and verifying software and system
requirements. See [12, 11] for a review of the SCR tabular notation, the state machine
model which defines the SCR semantics, and the SCR tools.

1 Many use “masking fault-tolerance” to refer only to what we call “transparent masking.”

2



An important construct in SCR, themode class, can be very useful in specifying
the required behavior of fault-tolerant systems. Conceptually, each mode in a mode
class corresponds to a “mode of operation” of the system. Thus, for example, in flight
software, pilot-visible modes determine how the software reacts to a given pilot input.
As shown in Section 5, modes similarly have a special role in SCR specifications of
fault-tolerant systems.

3 A Formal Method for Building Fault-Tolerant Systems

This section introduces a new method for building a fault-tolerant system. Based on
concepts in Parnas’ Four Variable Model [21], the method is applied in two phases.
In the first phase, the normal system behavior is specified and shown to satisfy a set
of critical properties, most commonly, safety properties [2]. In the second phase, I/O
devices, e.g., sensors and actuators, are selected, hardware and other faults which may
occur are identified, and the system’sfault-tolerantbehavior is designed and specified.
The fault-tolerant specification formulated in this phase is shown to satisfy 1) the critical
system properties, typically weakened, which were verified in the first phase and 2) new
properties specifying fault detection and fault recovery. While each phase is described
below as a sequence of steps, the precise ordering of the steps may vary, and some steps
may occur in parallel.

3.1 Specify the Normal System Behavior

In the first phase, the system behavior is specified under the assumption that no faults
can occur, and essential system properties are formulated and verified. The “normal”
behavior omits any mention of I/O devices, or of hardware faults and other system
malfunctions.

Specify NAT and REQ. To represent the system’s normal behavior, a state machine
model of the system requirements is formulated in terms of two sets of environmental
variables—monitored and controlled variables—and two relations—REQ and NAT—
from Parnas’ Four Variable Model [21]. Both NAT and REQ are defined on the moni-
tored and controlled variables. NAT specifies the natural constraints on monitored and
controlled variables, such as constraints imposed by physical laws and the system en-
vironment. REQ specifies the required relation the system must maintain between the
monitored and controlled variables under the assumptions defined by NAT. In the first
phase, an assumption is that the system can obtain perfect values of the monitored
quantities and compute perfect values of the controlled variables. During this phase, the
system tolerances are also defined; these may include the required precision of values
of controlled variables, timing constraints imposed by REQ on the controlled variables,
and timing constraints imposed by NAT.

Formulate the System Properties.In this step, the critical system properties are for-
mulated as properties of the state machine model. If possible, these properties should be
safety properties, since the second phase produces a refinement (i.e., when the system
is operating normally), and safety properties are preserved under refinement [1].

Verify the System Properties. In the final step, the properties are verified to hold in
the state machine model, using, for example, a model checker or theorem prover.

3



3.2 Specify the Fault-Tolerant Behavior

In the second phase, the assumption that the system can perfectly measure values of
monitored quantities and perfectly compute values of controlled quantities is removed,
and I/O devices are selected to estimate values of monitored quantities and to set values
of controlled quantities. Also removed is the assumption that no faults occur. Possible
faults are identified, and the system is designed to tolerate some of these faults. Finally,
the fault-tolerant behavior is specified as a fault-tolerant extension (see Section 4) which
adds extra behavior to handle faults and which may include new externally visible be-
havior, e.g., operator notification of a sensor failure.

Select I/O Devices and Identify Likely Faults. In the second phase, the first step is to
select a set of I/O devices and to document the device characteristics, including iden-
tification of possible faults. Among the possible faults are faults that invalidate either
sensor inputs or actuator outputs and faults that corrupt the program’s computations.
Examples of faults include the failure of a single sensor, the simultaneous failure of all
system sensors, and the failure of a monitored variable to change value within some
time interval. For practical reasons, the system is designed to respond to only some
possible faults. An example of an extremely unlikely fault is simultaneous failure of all
system sensors—recovery from such a massive failure is likely to be impossible. Once
a set of faults is selected, a design is developed that either makes the system tolerant of
a fault or reports a fault so that action may be taken to correct or mitigate the fault.

Design and Specify the Fault-Tolerant Behavior. A wide range of fault-tolerance
techniques have been proposed. One example is hardware redundancy, where two or
more versions of a single sensor are available, but only one is operational at a time. If
the operational sensor fails, the system switches control to a back-up sensor. In another
version of hardware redundancy, three (or any odd number of) sensors each sample a
monitored quantity’s value, and a majority vote determines the value of the quantity.
Some fault-tolerance techniques make faults transparent. For example, if three sensors
measure aircraft altitude, a majority vote may produce estimates of the altitude satisfy-
ing the system’s tolerance requirements and do so in a transparent manner. Other tech-
niques do not make faults transparent—for example, techniques which report a fault to
an operator, who then takes some corrective action.

Verify Properties of the Fault-Tolerant Specification. In this step, the critical prop-
erties verified to hold for the normal system behavior must be shown to hold for the
fault-tolerant behavior. In some cases, properties of the normal system will not hold
throughout the fault-tolerant system but may remain true for only some behavior (e.g.,
for only the normal behavior). A new notion of partial refinement, defined in Section 4,
describes the conditions which must be established for the fault-tolerant system to par-
tially inherit properties of the normal system. In addition, new properties are formulated
to describe the required behavior when a fault is detected and when the system recovers
from a fault. It must then be shown that the fault-tolerant specification satisfies these
new properties, which can be established as invariants with the aid of compositional
proof rules, such as those presented in Section 4.2.

4



4 Formal Foundations

This section presents formal definitions, theoretical results, and formal techniques that
support our approach to developing provably correct fault-tolerant systems. The most
important concepts and results include our notions ofpartial refinementand fault-
tolerant extension, and two proof methods for establishing properties of a fault-tolerant
extension based on properties of the normal (fault-free) system behavior it extends. The
first proof method is based on Theorem 1 concerning property inheritance under par-
tial refinement; the second is based on compositional proof rules for invariants, two
of which are shown in Figure 2. The section begins with general notions concerning
state machines, then introduces fault-tolerance concepts, and finally, discusses addi-
tional concepts and results that apply as additional assumptions about state machines
are added—first, that states are determined by the values of a set of state variables, and
second, that the state machines are specified in SCR. Each concept or result presented
is introduced at the highest level of generality possible. The definitions, results, and
techniques of this section are illustrated in the ASW example presented in Section 5.

4.1 General definitions
To establish some terminology, we begin with the (well-known) definitions ofstate ma-
chineandinvariant property(invariant, for short). As is often customary, we consider
predicates to be synonymous with sets; thus, “P is a predicate on setS” ≡ “P ⊆ S”,
“P (s) holds”≡ “s ∈ P ”, etc.

Definition 1. State machine.A state machineA is a triple(SA, ΘA, ρA), whereSA is a
nonempty set of states,ΘA ⊆ SA is a nonempty set ofinitial states, andρA ⊆ SA ×SA

is a set oftransitionsthat contains the stutter step(sA, sA) for everysA in SA. A
statesA ∈ SA is reachableif there is a sequence(s0, s1), (s1, s2), . . . (sn−1, sn) of
transitions inρA such thats0 is an initial state andsn = sA. A transition(sA, s′A) ∈ ρA

is a reachable transitionif sA is a reachable state. Reachable states/transitions ofA
are also calledA-reachable states/transitions.

Definition 2. One-state and two-state predicates/invariants.Let A = (SA, ΘA, ρA)
be a state machine. Then aone-state predicateof A is a predicateP ⊆ SA, and atwo-
state predicateof A is a predicateP ⊆ SA × SA. A one-state (two-state) predicateP
is a state (transition)invariantof A if all reachable states (transitions) ofA are inP .

We next define two notions that describe how two state machines (e.g., two models
of a system) may be related. The well known notion ofrefinementis especially useful
in the context of software development because the existence of a refinement mapping
from a state machineC to a state machineA at a more abstract level permits impor-
tant properties—including all safety properties (and hence all one-state and two-state
invariants)—proved ofA to be inferred ofC. A new notion, which we callpartial re-
finement, is a generalization of refinement useful in situations where the approximation
by a detailed system model to a model of normal system behavior is inexact.

Definition 3. Refinement.Let A = (SA, ΘA, ρA) andC = (SC , ΘC , ρC) be two state
machines, and letα : SC → SA be a mapping from the states ofC to the states of
A. Thenα is a refinement mappingif 1) for everysC in ΘC , α(sC) is in ΘA, and 2)
ρA(α(sC), α(s′C)) for every pair of statessC , s′C in SC such thatρC(sC , s′C).

5



Fig. 1.Transitions in the fault-tolerant systemFT.

Definition 4. Partial Refinement. Let A = (SA, ΘA, ρA) and C = (SC , ΘC , ρC) be
two state machines andα : SC

◦→ SA be a partial mapping from states ofC to states
of A. Thenα is apartial refinement mappingif 1) for everysC in ΘC , α(sC) is defined
and in ΘA, and 2)ρA(α(sC), α(s′C)) for every pair of statessC , s′C in the domain
α−1(SA) of α such thatρC(sC , s′C). When a partial refinement mappingα exists from
C to A, we say thatC is apartial refinementof A (with respect toα).

The notions ofvulnerable stateandvulnerable transitionare useful (see Theorem 1)
in describing the circumstances under which properties proved of a state machineA can
be partially inferred for a state machineC that is a partial refinement ofA.

Definition 5. Vulnerable states and vulnerable transitions.Let A = (SA, ΘA, ρA)
and C = (SC , ΘC , ρC) be two state machines, and letα : SC

◦→ SA be a partial
refinement. Then a statesC in the domain ofα is vulnerableif there exists a states′C
in SC such thatρC(sC , s′C) but the transition(sC , s′C) does not map underα to a
transition inA (in which case we refer to(sC , s′C) as avulnerable transition).

4.2 Concepts for fault tolerance

Our method for including fault tolerance in the software development process described
in Section 3 begins with a modelID of the normal (software) system behavior. In the
next phase,ID is used as a basis for constructing a modelFT of the system that is a
fault-tolerant extensionof ID in the following sense:

Definition 6. Fault-tolerant extension.Given a state machine modelID of a system,
a second state machine modelFT of the system is afault-tolerant extensionof ID if:

– the state setSFT of FT partitions naturally into two sets: 1)N , the set of normal
states, which includesΘFT and 2)F , the set of fault-handling states that represent
the system state after a fault has occurred, and

– there is a mapπ : N → SID and a two-state predicateO ⊆ N × N for
FT such thatπ(ΘFT ) ⊆ ΘID and s1, s2 ∈ N ∧ O(s1, s2) ∧ ρFT (s1, s2) ⇒
ρID(π(s1), π(s2)).

The mapπ and predicateO are, respectively, thenormal state mapandnormal transition
predicatefor FT.

Figure 1 illustrates the structure ofFT and its relationship toID . There are five classes
of transitions inFT:

6



1. transitions fromN to N that map to transitions inID (Normal Behavior),
2. transitions fromN to N that do not map to transitions inID (not shown),
3. transitions fromN to F (Fault Detection),
4. transitions fromF to F (Degraded Behavior), and
5. transitions fromF to N (Fault Recovery).

Remark 1.WhenFT is a fault-tolerant extension ofID , π is a partial refinement map-
ping from the state machine(SFT , ΘFT , O ∩ ρFT ) to ID . Further, ifFT has no transi-
tions of class 2, class 3 represents all vulnerable transitions inFT, andπ : SFT

◦→ SID

is a partial refinement mapping fromFT to ID .

Even whenπ is not a partial refinement fromFT to ID , there is still guaranteed
to be a partial refinement fromFT to ID whose domain can be defined in terms of
the normal transition predicateO in Definition 6. In particular, givenO, let Ô be the
one-state predicate forFT defined by:

Ô(s1)
4
= (∀s2 ∈ SFT : ρ(s1, s2) ⇒ O(s1, s2))

(It is easily seen, as indicated in Figure 1, thatÔ ⊆ N .) Then, for any states ∈ SFT,
Ô(s) implies that all transitions inFT from s map to transitions inID . Therefore,
restricted to the set̂O, the mapπ is a partial refinement map fromFT to ID .

If (s1, s2) is a transition inFT of class 5, we refer tos2 as areentry state. Further, if
(s1, s2) is of class 2, we refer tos2 as anexceptional target state. By a simple inductive
argument, we have:

Lemma 1. If every reentry state and every exceptional target state inN maps under
π to a reachable state inID , then everyFT-reachable state inN maps underπ to a
reachable state inID , and everyFT-reachable transition in̂O ⊆ N maps underπ to a
reachable transition inID .

Using the notation above, we can now state:

Theorem 1. Property inheritance under partial refinement.LetFT be a fault-toler-
ant extension ofID in which every reentry or exceptional target state maps underπ to

a reachable state inID . Then 1) for every one-state invariantP of ID , Φ(P )
4
= P ◦ π

holds for everyFT-reachable state inN , and 2) for every two-state invariantP of ID ,

Φ(P ) 4= P ◦ (π × π) holds for every non-vulnerable reachable transition ofFT from a
state inN (thus, in particular, for every reachable transition ofFT from a state inÔ).

As shown below, the fault-tolerant ASW behavior is a fault-tolerant extension of
the normal ASW behavior with natural definitions forN andF (see Section 5),π (see
Section 4.3), andO (see Section 4.4) such that all transitions fromN to N are of class 1.
Further, we have proven formally that all reentry states in the fault-tolerant version of
the ASW are reachable, and there are no exceptional target states. Hence, for the ASW,
Theorem 1 can be used to deduce properties ofFT from properties ofID .

In general, however, to supplement Theorem 1, a method is needed for establishing
properties ofFT in the case when it is difficult or impossible to establish that all reentry
states and exceptional target states inFT map underπ to reachable states ofID . For
this purpose, we providecompositional proof rulesanalogous to those in [15]. We first
define what it means for a predicate torespecta mapping:

7



(1) Q is a one-state predicate forFT such thatQ respectsπ
(2) π(ΘF T ) ⊆ ΘID ⊆ π(Q)
(3) s1, s2 ∈ SID ∧ π(Q)(s1) ∧ ρID(s1, s2) ⇒ π(Q)(s2)
(4) s1, s2 ∈ SF T ∧ ρF T (s1, s2) ⇒ [(Q(s1) ∧ ¬O(s1, s2)) ⇒ Q(s2)]
(5) s1, s2 ∈ N ⊂ SF T ∧ ρF T (s1, s2) ⇒ [O(s1, s2) ⇒ ρID(π(s1), π(s2))]

Q is a state invariant ofFT

(1) P andQ are two-state predicates forFT such thatP ⇒ Q ∧ P respectsπ
(2) s1, s2 ∈ SID ∧ ρID(s1, s2) ⇒ ((π × π)(P ))(s1, s2)
(3) s1, s2 ∈ SF T ∧ ρF T (s1, s2) ⇒ [¬O(s1, s2) ⇒ Q(s1, s2)]
(4) s1, s2 ∈ N ⊂ SF T ∧ ρF T (s1, s2) ⇒ [O(s1, s2) ⇒ ρID(π(s1), π(s2))]

Q is a transition invariant ofFT

Fig. 2.Proof rules for state and transition invariants ofFT.

Definition 7. Let π : S1 → S2 be a mapping from setS1 to setS2. Then 1) a pred-
icate Q on S1 respectsπ if for all s, ŝ in S1, Q(s) ∧ (π(s) = π(ŝ)) ⇒ Q(ŝ), and
2) a predicateQ on S1 × S1 respectsπ if for all s, ŝ, s′, ŝ′ in S1, Q(s, s′) ∧ (π(s) =
π(ŝ)) ∧ (π(s′) = π(ŝ′)) ⇒ Q(ŝ, ŝ′).

Figure 2 gives proof rules for establishing that a one-state (two-state) predicateQ on
FT is a state (transition) invariant ofFT. Note that line (5) of the first proof rule and
line (4) in the second proof rule are part of the definition of fault-tolerant extension.

4.3 Fault tolerance concepts in terms of state variables

When the states of a state machine are defined by a vector of values associated with a
set of state variables (as is true, for example, in SCR specifications), it is possible to
interpret the concepts in Section 4.2 more explicitly. In particular, constructing a fault
tolerant system modelFT from a normal system modelID is usually done by adding
any new variables, new values of types of existing variables, and new transitions needed
to describe the triggering and subsequent handling of faults. We will refer to the original
variables asnormalvariables, and the added variables asfault-tolerancevariables; for
any normal variable, we will refer to its possible values inID asnormal values, and
any new possible values added inFT asextendedvalues. In this terminology, the states
in N ⊆ SFT are those for which all normal variables have normal values. The map
π : N → SID can then simply be chosen to be the projection map with respect to the
normal variables.

Although Definition 2 represents predicates abstractly as sets when states are de-
termined by the values assigned to state variables, most predicates of interest can be
represented syntactically as relations among state variables and constants. Further, on a
syntactic level, the map(s)Φ defined in Theorem 1 will be the identity.

8



4.4 Modeling fault tolerance in SCR

As shown in Section 5.2 below, several aspects of an SCR specification can be used to
advantage in definingFT as a fault-tolerant extension of a normal system specification
ID in the sense of Definition 6. These aspects include mode classes, tables to define the
behavior of individual variables, and the description of transitions in terms of events.

We call a fault-tolerant extensionFT of ID obtained by the technique of Section 5.2
simpleif any row splits in the table of any normal variable result in new rows defining
updated values of the variable that are either the same as in the original row forID or are
among the extended values for that variable. (For example, row 3 of Table 1 is split into
rows 3a and 3b of Table 6.) In the terminology of Definition 6, in a simple fault-tolerant
extension, every transition fromN in FT either maps underπ to a normal transition in
ID or is a transition fromN to F (class 3). It is not difficult to prove the following:

Theorem 2. For any simple fault-tolerant extensionFT of ID , the normal state mapπ
is a partial refinement mapping and one can choose the normal transition predicate to
be

O(s1, s2)
4
= N(s1) ∧ N(s2).

Thus, since the predicateN can be expressed simply as an assertion that no normal
variable has an extended value, it is possible in the context of SCR to computeO for
anyFT defined as a simple fault-tolerant extension ofID .2

5 Example: Altitude Switch (ASW)
This section shows how the method presented in Section 3 can be applied using SCR
to a practical system, the Altitude Switch (ASW) controller in an avionics system [20].
The goal of the ASW example is to demonstrate the specification of a system’s normal
behaviorID and the separate specification of its fault-tolerant behaviorFT as a simple
fault-tolerant extension. This is in contrast to [7], which presents an earlier SCR speci-
fication of the ASW behavior, whose goal was to demonstrate the application of Parnas’
Four Variable Model to software development using SCR.

The primary function of the ASW is to power on a generic Device of Interest (DOI)
when an aircraft descends below a threshold altitude. In some cases, the pilot can set an
inhibitor button to prevent the powering on of the DOI. The pilot can also press a reset
button to reinitialize the ASW. Fault-tolerance is supported by three sensors and the
system clock. If certain events occur (e.g., all three sensors fail for some time period),
the system enters a fault mode and may take some action (e.g., turn on a fault indicator
lamp). Recovery from a fault occurs when the pilot resets the system.

Sections 5.1 and 5.2 describe the results of applying our method to the specification
and verification of both the normal and the fault-tolerant ASW behavior. Section 5.2
also shows how the theoretical results in Section 4 can be used to prove properties of
the ASW’s fault-tolerant behaviorFT. Starting from propertyP2 of the normal ASW
behavior, our results about property inheritance allow us to deriveP̃2, a weakening of
P2, which holds inFT, while our compositional proof rules can be used to show that
P̂2, a different weakening ofP2, also holds inFT. Table 4 defines bothP2 and P̂2.
PropertyP̃2 is defined in Section 5.2.

2 We have also shown thatO can be automatically computed for some examples in whichFT is
not a simple fault-tolerant extension ofID .

9



Row Old Event New
No. Mode Mode

1 init @F(mInitializing) standby

2 standby @T(mReset) init

3 standby @T(mAltBelow) WHEN awaitDOIon

(NOT mInhibit AND

mDOIStatus=off)

4 awaitDOIon @T(mDOIStatus=on) standby

5 awaitDOIon @T(mReset) init

Table 1.Mode transition table formcStatus.

Mode in cWakeUpDOI

mcStatus

init, standby False

awaitDOIon True

Table 2.cWakeUpDOI cond. table.

5.1 Specify and Verify the Normal Behavior of the ASW

To characterize the normal behaviorID of the ASW, this section presents a state ma-
chine model of the ASW’s normal behavior expressed in terms of NAT and REQ, and a
set of critical system properties which are expected to hold in the model.

Specify NAT and REQ. The normal ASW behavior is specified in terms of 1) con-
trolled and monitored variables, 2) environmental assumptions, 3) system modes and
how they change in response to monitored variable changes, and 4) the required rela-
tion between the monitored and controlled variables. The relation NAT is defined by 1)
and 2) and the relation REQ by 3) and 4).

The ASW has a single controlled variablecWakeUpDOI, a boolean, initially false,
which signals the DOI to power on, and six monitored variables: 1)mAltBelow, true
if the aircraft’s altitude is below a threshold; 2)mDOIStatus, which indicates whether
the DOI is on; 3)mInitializing, true if the DOI is initializing; 4)mInhibit, which
indicates whether powering on the DOI is inhibited; 5)mReset, true when the pilot has
pressed the reset button; and 6)mTime, the time measured by the system clock. The
ASW also has a single mode classmcStatus containing three system modes: 1)init
(system is initializing), 2)awaitDOIon (system has requested power to the DOI and is
awaiting a signal that the DOI is operational), and 3)standby (all other cases).

Table 1 defines the ASW mode transitions. Once initialization is complete (event
@F(mInitializing) occurs), the system moves frominit to standby. It returns to
init when the pilot pushes the reset button (@T(mReset) occurs). The system moves
from standby to awaitDOIon when the aircraft descends below the threshold altitude
(@T(mAltBelow) occurs), but only when powering on is not inhibited, and the DOI is
not powered on. Once the DOI signals that it is powered on (@T(mDOIStatus = on)
occurs), the system goes fromawaitDOIon to standby. Table 2 defines the value
of the controlled variablecWakeUpDOI as a function of the mode classmcStatus. If
mcStatus = awaitDOIon, thencWakeUpDOI is True; otherwise, it isFalse.

10



Name System Formal Statement
A1 ID , FT (mTime′ − mTime) ∈ {0, 1}
A2 ID DUR(mcStatus = init) ≤ InitDur

A3 ID DUR(mcStatus = awaitDOIon) ≤ FaultDur

A4 FT DUR(cFaultIndicator = on) ≤ FaultDur

Table 3.ASW Assumptions.

The relation NAT for ASW contains three assumptions,A1, A2, andA3, each a
constraint on the system timing (see Table 3).3 The first assumption,A1, states that
time never decreases and, if time increases, it increases by one time unit.4 Assumptions
A2 andA3 define constraints on the time that the system remains in specified modes.
To represent these constraints, we require SCR’sDUR operator. Informally, ifc is a
condition andk is a positive integer, the predicateDUR(c) = k holds at stepi if in stepi
conditionc is true and has been true for exactlyk time units.A2 requires that the ASW
spend no more thanInitDur time units initializing, whileA3 requires the system to
power on the DOI in no more thanFaultDur time units.

Specify the ASW Properties. Table 4 defines two required properties,P1 andP2, of
the ASW’s normal behavior.P1, a safety property, states that pressing the reset button
always causes the system to return to the initial mode.P2, another safety property, spec-
ifies the event and conditions that must hold to wake up the DOI. A user can execute
the SCR invariant generator [14] to derive a set of state invariants from an SCR specifi-
cation. Such invariants may be used as auxiliary properties in proving other properties,
such asP1 andP2. Applying the invariant generator to the specification of the normal
ASW behavior (defined by Table 1, Table 2, and assumptionsA1-A3) automatically
constructs the state invariantH1, which is defined in Table 5.

Verify the ASW Properties. The property checker Salsa [8] easily verifies that the
specification of the ASW’s normal behavior satisfiesP1 andP2. Completing the proof
of P2 requires the auxiliaryH1; provingP1 requires no auxiliaries.

Name System Formal Statement
P1 ID , FT @T(mReset) ⇒ mcStatus′ = init

P2 ID mcStatus = standby ∧ @T(mAltBelow) ∧ ¬mInhibit
∧ mDOIStatus = off ⇒ cWakeUpDOI′

P̂2 FT mcStatus = standby ∧ @T(mAltBelow) ∧ ¬mInhibit
∧ mDOIStatus = off ∧ ¬mAltimeterFail ⇒ cWakeUpDOI′

G1 FT mAltimeterFail ∧ mcStatus = standby ⇒ mcStatus′ 6= awaitDOIon

G2 FT mcStatus = fault ⇒ mcStatus′ = init ∨ mcStatus′ = fault

Table 4.ASW Properties.

3 In Tables 3-5, assumptions and properties ofboththe normal (ID ) and fault-tolerant (FT) sys-
tems are presented. Any row in these tables that applies only toFT is described in Section 5.2.

4 The primed variablemTime′ in Table 3 and other primed expressions refer to the expression’s
value in the new state; any unprimed expression refers to the expression’s value in the old state.

11



Name System Formal Statement
H1 ID , FT (mcStatus = awaitDOIon) ⇔ cWakeUpDOI

J2 FT cFaultIndicator = on ⇔ mcStatus = fault

J3 FT DUR(cFaultIndicator = on) 6= 0 ⇒ cFaultIndicator = on

Table 5.ASW State Invariants.

5.2 Specify and Verify the Fault-Tolerant Behavior of the ASW

This section describes how the normal behavior of the ASW can be refined to handle
faults. First, the I/O devices are selected. Next, the faults that the ASW system will be
designed to handle are identified, and the fault-tolerant and failure notification behavior
of the ASW are specified. Finally, new ASW properties are formulated to capture the
required fault-tolerant behavior, and these new properties as well as the ASW properties
proven for the normal behavior, possibly reformulated, are proven to hold in the fault-
tolerant specification.

Select the ASW I/O Devices.To estimate whether the aircraft is below the thresh-
old altitude, three altimeters are selected, one analog and the other two digital. For a
description of the other I/O devices selected for the ASW, see [7].

Identify Likely ASW Faults. The ASW is designed to tolerate three faults: 1) the fail-
ure of all three altimeters, 2) remaining in the initialization mode too long, and 3) failure
to power on the DOI on request within some time limit. All three faults are examples
of eventual masking—the system enters a fault handling state but eventually recovers
to normal behavior. To notify the pilot when a fault occurs, the ASW turns on a Fault
Indicator lamp. The ASW is also designed to handle a single altimeter failure; it uses
the remaining two altimeters to determine whether the aircraft is below the threshold
altitude. This is an example of masking where the fault is transparent at the system
level—the system never enters a fault handling state when only one altimeter fails.

Specify ASW Fault-Tolerant Behavior. Generally, adding behavior related to fault
detection, notification, and handling to the specification of normal system behavior re-
quires new monitored variables to detect faults, new controlled variable to report the oc-
currence of faults, and new values for any variable, and, in particular, new fault modes
in mode classes. To define the additional behavior in SCR, tables defining the new vari-
ables are added, and tables defining the existing variables are modified and extended.

Adding fault-handling and fault notification to the normal ASW specificationID
requires 1) a new monitored variablemAltimeterFail to signal the failure of all three
altimeters,5 2) a new controlled variablecFaultIndicator to notify the pilot of a fault
by turning on a lamp, 3) a new modefault to indicate the detection of a fault, 4) a new
table definingcFaultIndicator, and 5) the modification and extension of two tables:
the table defining the controlled variablecWakeUpDOI and the mode transition table
defining the mode classmcStatus. The final step removes assumptionsA2 andA3,
thus allowing the fault-tolerant system to suffer from these faults.

5 Because this paper focuses on the fault-tolerance aspects of the ASW, the details of how
mAltimeterFail is computed are omitted. For these details, see [7].

12



Row Old Event New
No. Mode Mode

† 3a standby @T(mAltBelow) WHEN (NOT mInhibit AND awaitDOIon

mDOIStatus=off) AND NOT mAltimeterFail

→ 3b standby @T(mAltBelow) WHEN (NOT mInhibit AND fault

mDOIStatus=off) AND mAltimeterFail
→ 6 init @T(DUR(mcStatus = init) > InitDur) fault

→ 7 awaitDOIon @T(DUR(mcStatus = awaitDOIon) > FaultDur) OR fault

@T(DUR(mAltimeterFail) > FaultDur)

; 8 fault @T(mReset) init

Table 6.Fault Handling Modifications for Mode Transition Table in Table 1.

Mode in mcStatus cFaultIndicator

init, standby, awaitDOIon off

fault on

Table 7.New table definingcFaultIndicator.

Mode in mcStatus cWakeUpDOI

init, standby, fault False

awaitDOIon True

Table 8.Revised table forcWakeUpDOI.

To define a new mode transition table capturing fault detection and recovery, the
mode transition table for the ASW normal behavior, Table 1, is replaced with a new
mode transition table, containing rows 1, 2, 4, and 5 of Table 1 and rows 6, 7, and
8 of Table 6, and replacing row 3 of Table 1 with rows 3a and 3b of Table 6. In the
new table, a fault is detected 1) if the system takes more thanInitDur time units to
initialize (replaces the deletedA2), 2) if the DOI takes more thanFaultDur time units
to power up (replaces the deletedA3), or 3) if all three altimeters have failed for more
thanFaultDur time units. Three rows of Table 6 (rows 3b, 6, and 7), each marked by a
simple arrow, indicate the detection of the three faults. The system recovers from a fault
when the pilot pressesmReset in response to the Fault Indicator lamp turning on. To
represent recovery, a new transition fromfault to init, triggered by@T(mReset), is
added (row 8, marked by a squiggly arrow). To force the system to recover within some
bounded time, a new assumptionA4 (see Table 3) is that the pilot always responds to a
failure notification by pushing reset within some time limit. To complete the new table,
row 3 of Table 1 is split into row 3a and row 3b based on whethermAltimeterFail is
true. If true, the system goes tofault (row 3b); otherwise, it goes toawaitDOIon as
in the normal specificationID (row 3a, marked by a dagger).

To indicate when the Fault Indicator lamp is on, a new table, Table 7, is defined to
indicate thatcFaultIndicator is on when the system is in thefault mode and off
otherwise. The last step is to add thefault mode to the set of modes which assign the
valuefalseto the table definingcWakeUpDOI (see Table 8).

Adding the new modefault to the specification allows a normal state in the ASW
to be distinguished from a fault handling state. In particular, we define a state pred-
icate N , whereN : mcStatus 6= fault, and a second state predicateF , where
F : mcStatus = fault.

13



Verify the ASW Fault-Tolerance Properties. The safety properties,P1 andP2, prop-
erties of the specificationID of normal behavior, are also included as candidate prop-
erties of the fault-tolerant versionFT of the ASW. In addition, safety properties,G1

andG2, defined in Table 4, represent part of the required fault-tolerant behavior of the
ASW [9]. To support the proofs of the propertiesP1, P2, G1, andG2, the SCR invariant
generator is applied to the fault-tolerant specification. Of the two invariants generated,
the first corresponds exactly toH1, the invariant generated previously from the normal
specificationID ; the second invariantJ2 is defined in Table 5. The third invariantJ3,
also defined in Table 5, is a property of theDUR operator. UsingJ2 andJ3 as auxiliary
invariants, we used Salsa to check the fault-tolerant specificationFT for all properties
listed in Table 4. All butP2 were shown to be invariants. Thus the required behavior
represented byP2 fails in FT (that is, when all altimeters fail). Applying Theorem 1
from Section 4, we can show thatFT inherits the weakened propertỹP2

4= N ′ ⇒ P2

from propertyP2 of ID . In addition, the second compositional proof rule from Section 4
with P = P2 provides an alternate way to show thatP̂2, a weakened version ofP2, holds
in FT. (See Table 4 for the definition of̂P2.)

To further evaluate the ASW specifications, we checked additional properties, e.g.,
the propertyDUR(mcStatus = standby ∧ mAltimeterFail) ≤ FaultDur, whose
invariance guarantees that the ASW never remains inmcStatus = standby too long.
Failure to prove this property led to the discovery (via simulation) that the ASW could
remain in modestandby forever—not a desired behavior. Although our specification
does not fix this problem, the example shows how checking properties is a useful tech-
nique for discovering errors in specifications.

6 Related Work

Our model fits the formal notion of masking fault-tolerance of [18], but rather than ex-
pressing recovery as a liveness property, we use bounded liveness, which is more prac-
tical. Other compositional approaches to fault-tolerance describe the design of fault-
tolerant detectors and correctors [4] and the automatic generation of fault-tolerant sys-
tems [18, 3]. Our notion of fault-tolerant extension is most closely related to the notion
of retrenchment formulated by Banach et al. [6] and the application of retrenchment
to fault-tolerant systems [5]. General retrenchment is a means of formally expressing
normal and exceptional behavior as a formula of the formA ⇒ B ∨ C, whereA ⇒ B
is true for the normal cases, andA ⇒ C is true for the exceptional cases. Our concept
of the relation of fault-tolerant behavior to normal behavior can also be described in this
form:ρFT(s1, s2) ⇒ (O(s1, s2)∧ρID(π(s1), π(s2)) ∨ ¬O(s1, s2)∧γ(s1, s2)), where
γ is derived from the transitions of classes 2–5. The novelty of our approach is recogni-
tion that this disjunction may be expressed equivalently as the conjunction of two impli-
cations,ρFT(s1, s2)∧O(s1, s2) ⇒ ρID(π(s1), π(s2)) andρFT(s1, s2)∧¬O(s1, s2) ⇒
γ(s1, s2), thus providing the basis for our theory of partial refinement and the develop-
ment of compositional proof rules.

In [19], Liu and Joseph describeclassical refinementof fault-tolerant systems as
well as refinement of timing and scheduling requirements. Classical refinement is well-
suited to implementation of “transparent masking fault-tolerance,” often using redun-
dancy, and contrasts with eventual masking fault-tolerance, which tolerates weaker in-

14



variant properties when the system is faulty (i.e., has degraded performance), and thus
requires a different approach such as partial refinement.

Our extension of “normal” behavior with added fault-tolerant behavior may be
viewed as a transformation of the normal system. A number of researchers, e.g. [19, 10],
apply the transformational approach to the development of fault-tolerant systems. This
approach is also found in Katz’ formal treatment of aspect-oriented programming [16].
In addition, Katz describes how various aspects affect temporal logic properties of a
system and defines a “weakly invasive” aspect as one implemented as code which al-
ways returns to some state of the underlying system. The relationship of a “weakly
invasive” aspect to the underlying system is analogous to the relationship ofF to N in
Figure 1 when there are no exceptional target states and every entry state maps underπ
to a reachable state inID . In this case, an analog of our Theorem 1 would hold for the
augmented system.

7 Conclusions

This paper has presented a new method, based on Parnas’ Four Variable Model, for
specifying and verifying the required behavior of a fault-tolerant system; provided a
theory of partial refinement and fault-tolerant extension, and a set of compositional
proof rules, as a foundation for the method; and demonstrated how the SCR language
and tools can be used to support the new method as a structured alternative to the ad hoc
construction and monolithic verification of fault-tolerant systems. Like Banach’s theory
of retrenchment, our theory of partial refinement and fault-tolerant extension applies not
only to fault-tolerant systems, but more generally to all systems with both normal and
exceptional behavior.

One major benefit of the compositional approach presented here is that it separates
the task of specifying the normal system behavior from the task of specifying the fault-
tolerant behavior, thus simplifying the specification of such systems and making their
specifications both easier to understand and easier to change. The theory in Section 4
provides the basis for formulating additional compositional proof rules and vulnera-
bility analyses, both topics for future research. We also plan to explore the utility of
our approach for fault-tolerance techniques other than masking. For example, omitting
recovery results in a method which applies to fail-safe fault-tolerance.

Formal proofs of state and transition invariants capturing desired system behavior,
together with properties derived from partial refinement and verified using our composi-
tional proof rules, should lead to high confidence that the specification of a given fault-
tolerant system is correct. Our new approach is supported by the SCR toolset, where
increasing confidence of correctness is supported by simulation, model-checking, and
proofs of invariants. In future research, we plan to explore the automatic construction
of efficient source code from theFT specification using the SCR code generator [22]
and other code synthesis techniques.

Acknowledgments

The authors thank the anonymous referees for their helpful comments as well as Sandeep
Kulkarni for useful discussions on applying SCR to fault-tolerant systems. This research
was funded by the Office of Naval Research.

15



References

1. M. Abadi and L. Lamport. The existence of refinement mappings.Theoretical Computer
Science, 82(2):253–284, 1991.

2. B. Alpern and F. B. Schneider. Defining liveness.Inf. Process. Lett., 21(4):181–185, 1985.
3. A. Arora, P. C. Attie, and E. A. Emerson. Synthesis of fault-tolerant concurrent programs.

In Proc. PODC’98, pages 173–182, 1998.
4. A. Arora and S. S. Kulkarni. Component based design of multitolerant systems.IEEE Trans.

Softw. Eng., 24(1):63–78, Jan. 1998.
5. R. Banach and R. Cross. Safety requirements and fault trees using retrenchment. In

M. Heisel, P. Liggesmeyer, and S. Wittman, editors,Proc. SAFECOMP-04, 2004.
6. R. Banach, M. Poppleton, C. Jeske, and S. Stepney. Engineering and theoretical underpin-

nings of retrenchment.Sci. Comput. Prog., 67:301–329, 2007.
7. R. Bharadwaj and C. Heitmeyer. Developing high assurance avionics systems with the SCR

requirements method. InProc. 19th Digital Avionics Sys. Conf., 2000.
8. R. Bharadwaj and S. Sims. Salsa: Combining constraint solvers with BDDs for automatic

invariant checking. InProc. Tools and Algorithms for the Construction and Analysis of
Systems (TACAS 2000), Berlin, 2000.

9. A. Ebnenasir.Automatic Synthesis of Fault-Tolerance. PhD thesis, Michigan State Univ.,
East Lansing, MI, 2005.

10. F. C. Gärtner. Transformational approaches to the specification and verification of fault-
tolerant systems: Formal background and classification.J. Univ. Comput. Sci, 5(10), 1999.

11. C. Heitmeyer, M. Archer, R. Bharadwaj, and R. Jeffords. Tools for constructing require-
ments specifications: The SCR toolset at the age of ten.Computer Systems Science and
Engineering, 20(1):19–35, Jan. 2005.

12. C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw. Automated consistency checking of
requirements specifications.ACM Transactions on Software Engineering and Methodology,
5(3):231–261, 1996.

13. K. L. Heninger. Specifying software requirements for complex systems: New techniques and
their application.IEEE Trans. Softw. Eng., SE-6, 1980.

14. R. Jeffords and C. Heitmeyer. Automatic generation of state invariants from requirements
specifications. InProc. Sixth ACM SIGSOFT Symp. on Foundations of Software Eng., 1998.

15. R. D. Jeffords and C. L. Heitmeyer. A strategy for efficiently verifying requirements. In
ESEC/FSE-11: Proc. 9th Euro. Softw. Eng. Conf./11th ACM SIGSOFT Int. Symp. on Foun-
dations of Softw. Eng., pages 28–37, 2003.

16. S. Katz. Aspect categories and classes of temporal properties.Lecture Notes in Computer
Science, 3880:106–134, 2006.

17. G. Kiczales, J. Lamping, A. Medhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. InObject-Oriented Programming (ECOOP97), volume 1241
of Lecture Notes in Computer Science. Springer, 1997.

18. S. S. Kulkarni and A. Arora. Automating the addition of fault-tolerance. In M. Joseph,
editor,FTRTFT’00, volume 1926 ofLNCS, pages 83–93. Springer, 2000.

19. Z. Liu and M. Joseph. Specification and verification of fault-tolerance, timing, and schedul-
ing. ACM Trans. Program. Lang. Syst., 21(1):46–89, 1999.

20. S. P. Miller and A. Tribble. Extending the four-variable model to bridge the system-software
gap. InProc. 20th Digital Avionics Sys. Conf., Oct. 2001.

21. D. L. Parnas and J. Madey. Functional documentation for computer systems.Science of
Computer Programming, 25(1):41–61, Oct. 1995.

22. T. Rothamel, C. Heitmeyer, E. Leonard, and A. Liu. Generating optimized code from SCR
specifications. InProceedings, ACM SIGPLAN/SIGBED Conference on Languages, Com-
pilers, and Tools for Embedded Systems (LCTES 2006), June 2006.

16


